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Abstract

A computational approach has been developed to assess the power of paramagnetism-based backbone constraints
with respect to the determination of the tertiary structure, once the secondary structure elements are known. This
is part of the general assessment of paramagnetism-based constraints which are known to be relevant when used in
conjunction with all classical constraints. The paramagnetism-based constraints here investigated are the pseudo-
contact shifts, the residual dipolar couplings due to self-orientation of the metalloprotein in high magnetic fields,
and the cross correlation between dipolar relaxation and Curie relaxation. The relative constraints are generated by
back-calculation from a known structure. The elements of secondary structure are supposed to be obtained from
chemical shift index. The problem of the reciprocal orientation of the helices is addressed. It is shown that the
correct fold can be obtained depending on the length of the α-helical stretches with respect to the length of the
non helical segments connecting the α-helices. For example, the correct fold is straightforwardly obtained for the
four-helix bundle protein cytochrome b562, while the double EF-hand motif of calbindin D9k is hardly obtained
without ambiguity. In cases like calbindin D9k, the availability of datasets from different metal ions is helpful,
whereas less important is the location of the metal ion with respect to the secondary structure elements.

Introduction

The large demand of protein structures poses the
problem of finding new methodologies for a quicker
structure determination. A relevant class of proteins
are the paramagnetic metalloproteins, i.e. proteins
associated with a paramagnetic metal ion. Other pro-
teins contain a diamagnetic metal ion that can be
substituted with a paramagnetic one. Paramagnetic
metalloproteins make available paramagnetism-based
constraints, which are precious in addition, or in al-
ternative, to the classical NOE constraints. They are
the pseudocontact shifts (PCS) (Banci et al., 1996),
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the residual dipolar couplings (RDC) due to self-
orientation of the metalloprotein in high magnetic
fields (Tolman et al., 1995), and the cross correla-
tion between dipolar relaxation and Curie relaxation
(CCR) (Boisbouvier et al., 1999), plus constraints
based on contact interactions, which are specific for
a given system (Bertini et al., 2001a,c). Nuclear re-
laxation enhancements are also precious constraints
based on the metal ion–nucleus distance (Bertini et al.,
2001a). The development of new protocols to obtain
the correct protein fold from paramagnetism-based
constraints is thus a quite promising field of research
(Banci et al., 1998a,b; Turner et al., 1998; Hus et al.,
2000, 2001; Bertini et al., 2001c,e). Paramagnetism-
based constraints provide basically long-range (with
respect to NOEs) information only, that may result
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of moderate utility in defining the elements of sec-
ondary structure, but may be very relevant in their
assembling to give rise to the whole protein fold. Fur-
thermore, such constraints are orientation constraints,
as they depend on the relative positions of nuclei, or
pairs of nuclei, in the molecular frame. The most com-
monly used programs for structure determination (e.g.,
DYANA (Güntert and Wüthrich, 1991; Güntert et al.,
1997; Banci et al., 1998a), X-PLOR (Brunger, 1992;
Brunger et al., 1998)) have been optimized to converge
with the classical NOE constraints, and may not han-
dle with the same efficiency the structural information
contained in this new type of constraints, that do not
simply consist of upper and/or lower distance limits
between atoms. Therefore, as already outlined (Hus
et al., 2000), the performance of these programs with
paramagnetic constraints may not necessarily be a
good indicator of the intrinsic strengths or weaknesses
of the latter.

With this in mind, we deemed useful to build an
exploratory algorithm to assess the potentiality of dif-
ferent sets of simulated paramagnetic constraints using
a deterministic rather than a statistical approach. In
the present work, attention is concentrated on α-helical
metalloproteins, for which it is assumed that the num-
ber, length and location of the α-helices are known,
for instance through the use of the chemical shift in-
dex (Hus et al., 2000, 2001). A procedure is then
developed to determine the relative position of metal
ion(s) and α-helices, modeled as rigid structures. The
idea of modeling proteins in terms of rigid subdomains
or fragments has recently being exploited in connec-
tion with the use of residual dipolar couplings induced
by external anisotropic media (Fischer et al., 1999;
Mollova et al., 2000; Delaglio et al., 2000; Meiler
et al., 2000, 2001; Fowler et al., 2000; Dosset et al.,
2001). In the present work, we start from rigid α-
helix structures and simulate data from one or more
of the following categories of paramagnetism-based
constraints: pseudocontact shifts (PCS), residual dipo-
lar coupling (RDC), and cross correlation between
dipolar coupling and Curie relaxation (CCR). The ad-
ditional effect of paramagnetic relaxation constraints
is also evaluated. The algorithm allows for the use
of additional datasets obtained by using another metal
ion, either in the same or in a different position. The
way this procedure behaves in various simulated cases
is instructive on the intrinsic information content of
paramagnetic constraints. In favorable cases, this sim-
ple procedure as such is able to reproduce the correct
protein fold.

Theoretical background

Pseudocontact shifts

The pseudocontact shifts (PCS), which arise in the
presence of magnetic anisotropy (Kurland and Mc-
Garvey, 1970), are given by the following equation
(Kemple et al., 1988):
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where χij are the components of the symmetric mag-
netic susceptibility tensor χ of the metal,

�χax = χzz − χxx + χyy

2
, �χrh = χxx − χyy,

ri is the distance between the atom i and the metal
ion and xi , yi , zi are the coordinates of the atom i in
a frame where the metal ion is at the origin. Alterna-
tively Equation 1 can be written in the metal frame, via
a rotation defined by three Euler angles. In this case,
only the first two terms are retained, i.e., the pseudo-
contact shifts depend on the two values of magnetic
susceptibility anisotropy.

Residual dipolar couplings

Residual dipolar couplings (RDC) are due to the in-
duced partial orientation in high magnetic field caused
by magnetic anisotropy. This prevents the dipolar cou-
pling energies from averaging to zero for all the pairs
of atoms of the protein. The equation describing this
effect is similar to that of PCS (Tolman et al., 1995;
Tjandra et al., 1996; Vold and Prosser, 1996; Bax
and Tjandra, 1997). However, the metal nucleus dis-
tance is not present in the equation. In particular, due
to the presence of partial orientation induced by the
paramagnetic magnetic susceptibility anisotropy, the
1J of a pair of nuclei AB experience a residual dipolar
coupling given by
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where B0 is the applied magnetic field, γA and γB

are the magnetogyric ratios of nuclei A and B, re-
spectively, T is the temperature, k is the Boltzmann
constant, h̄ is the Plank constant divided by 2π, rAB is
the distance between A and B and xA, yA, zA and xB ,
yB , zB are the Cartesian coordinates of the two nuclei
in the reference frame of the χ tensor. Such experi-
mental data can be obtained, for several nuclear pairs
in the protein backbone, such as 15N-1H of the back-
bone amides, 13Cα−1Hα and 13Cα-13C′ of the protein
backbone.

Curie-dipole-dipole cross correlation

Cross correlation between various interactions involv-
ing nuclear spins causes a difference in the nuclear
linewidths (Goldman, 1984; Farrar and Quintero-
Arcaya, 1985, 1987). One of these cross correlation
effects is that between the dipole-dipole interaction
and the Curie spin relaxation (CCR) (Ghose and
Prestegard, 1997). The difference in the linewidth (in
Hz) of the two components for, e.g., the H nucleus of
the HN doublet, calculated in the limit of an isotropic
χ tensor, is given by

�νi = µ0

4π

B0γ
2
H γN h̄χ

10π2

(
4τc + 3τc

1 + ω2
H τ2

c

)

3 〈ri , rHN〉2 − r2
i r2

HN

2r5
i r5

HN

,

(3)

where ri is the H-metal distance, rHN is the proton-
nitrogen distance, 〈, 〉 is the scalar product, µ0 is the
permeability of vacuum, ge is the electron g factor,
τc is the correlation time modulating the relaxation
process and ωH is the proton Larmor frequency.

Program implementation

Solution degeneracy

The relative position of the metal ion M with respect
to any rigid protein backbone can be determined from
a single dataset via existing fitting procedures (Banci
et al., 1996, 1997) by using Equation 1 with xi − xM ,
yi − yM , zi − zM instead of xi , yi , zi . We assume
here that existing information from, e.g. the chemical
shift index, permits the identification of the location
and length of α-helical elements of secondary struc-
ture along a given protein sequence. Although the
connectivities between each consecutive α-helix are
not known, we can treat each α-helix separately as a
rigid body and, using a proper dataset, the position
of the metal ion can be found with respect to each of
them. However, it is only possible to determine the
direction of the axes of the magnetic tensor up to re-
flections, due to the fact that the formulas describing
the dependence of PCS, RDC and CCR (Equations 1–
3) contain only the squares of the coordinates of the
atoms. For a single α-helix there are thus 23 = 8
possible choices of the axes of the magnetic tensor,
that become 4 after choosing a right hand system for
the principal axes of the tensor χ. Let n be the num-
ber of α-helices of the molecule. Then there are 4n

possible ways of assembling the relative position of
the α-helices, by superimposing the χ tensors deter-
mined separately from each α-helix. Since the axes
of the χ tensor can be arbitrarily selected for the first
α-helix, from each single dataset 4n−1 solutions are
generated. The spatial positions of the atoms in each
of the solutions give the same values for PCS, RDC or
CCR (Equations 1–3), so there is no way to distinguish
them.

From the point of view of the metal, once a random
orientation for the axes of the magnetic susceptibility
tensor is chosen, each atom has exactly 8 possible lo-
cations satisfying Equations 1–3 for the same values of
the constraints. However only 4 of them maintain the
chirality of the α-helix, so again we find 4n possible
ways of assembling the structure of the molecule, and
4n−1 different rigid configurations of the n α-helices.

In case only one dataset is available, i.e., measure-
ments are performed in the presence of one paramag-
netic metal ion only, and if the protein is constituted,
for example, by 4 α-helices, there are thus 64 indistin-
guishable solutions, as far as the paramagnetism-based
constraints are concerned. In order to distinguish the
correct one, other considerations must be introduced.
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For example, solutions where there is co-penetration
among different helices, or where two consecutive he-
lices are too far with respect to the number of residues
connecting them, must be discarded. This will reduce
considerably the number of allowed structures. How-
ever, the remaining degeneracy, if any, can be removed
only by introducing some distance constraints between
nuclei belonging to different helices, i.e., by using a
few long range NOEs.

From the preceding considerations, it is clear that
additional datasets may become very useful to select
the correct protein structure among the 4n−1 solutions.
If two different metals are substituted in a single loca-
tion, any degeneracy is already resolved, in principle,
when the magnetic susceptibility tensors of the two
metals do not share any principal axis (not collinear).
A similar condition for RDC constraints is stated in
(Ramirez and Bax, 1998; Al-Hashimi et al., 2000).
In fact, for each atom of any α-helix, two different
tensors permit the existence of only 2 positions, oppo-
site with respect to the metal, but only one maintains
the proper chirality of the α-helix. The same condition
also holds when the metals are in two different sites.
Although the condition is formally the same, in this
case parallel tensors are allowed, provided the vector
joining the two metals is not along a principal axis of
any tensor. Therefore, there is in principle only one
configuration that guarantees a good agreement with
both datasets. In conclusion, for datasets arising from
two metals with not collinear tensors only one configu-
ration is possible. Of course, this is true if the datasets
are not affected by errors. Otherwise, in principle more
than one solution can be found. A procedure must
be thus developed to determine the best geometrical
solutions with respect to the given data.

Computational strategy

To test the feasibility of the use of paramagnetic con-
straints only to determine the correct reciprocal orien-
tation of rigid α-helical secondary structure elements
within a protein of unknown structure a program has
been developed that calculates the reciprocal positions
of the α-helices and of the metal ion(s). This goal
is achieved by performing a fit of paramagnetism-
based constraints artificially generated from a given
protein structure (dobs). The fit permits to find the
relative position of the α-helices with respect to the
metal(s). The α-helices used in the calculations are
rigid polypeptides built from the known primary se-
quence of the selected protein and the dihedral angles

defining the ideal α-helix geometry using standard
molecule-building programs. In the fit, a target func-
tion is used to determine the agreement between
calculated and ‘experimental’ data.∗

The fitting procedure is divided into two stages.
The first stage is applied to single datasets, the second
is applied when more than one dataset is available,
which is the case when more than one metal ion is
considered. The first stage of the procedure is in itself
a two-step process. In the first step (Figure 1A) each
α-helix in turn is kept fixed in the laboratory system,
and a minimization procedure determines a suitable
location for the metal and the values of the magnetic
susceptibility tensor. Three variables are needed to fix
the spatial position of the metal, and five more vari-
ables to represent the magnetic susceptibility tensor.
Therefore, the minimization is carried over eight vari-
ables. At the end of this step, a rigid helix-tensor
structure is obtained. The second step of the first
stage of the procedure (Figure 1B) consists of super-
imposing the tensors belonging to each helix-tensor
structure. This is achieved by defining a coordinate
system centered on the metal (metal coordinate sys-
tem). Then a rigid motion is determined, bringing the
principal axes of each tensor of the helix-tensor struc-
tures to coincide with the metal coordinate system
axes. The rigid motion (a composition of a translation
and a rotation) is obtained by finding the diagonal form
of the tensor. The normalized eigenvector matrix is
the rotation matrix needed, and the three eigenvalues

∗The function that performed best in our tests is a weighted
normalized form of least squares:
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where the internal sums are carried over the atoms of each α-helix
and the external sums are carried over the α-helices composing the
protein. dobs

pcs , dobs
rdc , dobs

ccr are the observed values, dcal
pcs , dcal

rdc, dcal
ccr

are the values calculated from the protein structure, nα,pcs , nα,rdc,
nα,ccr are normalization factors, given by the reciprocal of the sum
of the squares of the measured data of each α-helix, wpcs, wrdc,
wccr are weights that depend on the estimated precision of the mea-
surements. The normalization factors are introduced to scale the
contribution to the target function of each α-helix, because different
α-helices may generate values with different orders of magnitude.
To deal with the excessively high data values, the square may be
filtered with a ramp filter. When the fit is performed on more than
one dataset, the errors corresponding to each dataset are summed.
Note that this form of the target function allows us to extract the
error relative to any subset of the α-helices and/or to any subset of
the datasets.
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Figure 1. (A) Sketch of the first step of the fist stage of the fitting program. For each helix, the position of the metal and of the magnetic
susceptibility tensor is fit in the helix frame. (B) Sketch of the second step of the fist stage of the fitting program. All helices are moved in the
magnetic susceptibility tensor frame centered on the metal ion, and, from this initial position, a global fit is performed. In this way, one of the
4n−1 solutions is found.

are the principal values of the magnetic susceptibility
tensor. The five tensor values are therefore substituted
by three Euler angles representing the rotation and by
�χax and �χrh, defined as in Equation 1. The transla-
tion vector is simply defined by the metal coordinates
taken with opposite sign.

One of the 4n−1 solutions (as already discussed)
is thus found. For datasets consisting of exact values,
the other solutions can be easily generated by applying
axial symmetries to the tensor axes of the helix-tensor
structures, before the roto-translation is applied. For
non-exact values, different �χax and �χrh parameters
can be obtained from the fit to the different helices.
Therefore, a global fit is performed, with a total num-
ber of variables equal to 6n+2, where n is the number
of α-helices in the molecule. The position of each
α-helix, as a rigid body, is in fact determined by 6
variables in a fixed reference frame. Again, one of the
4n−1 solutions is obtained.

In the second stage of the procedure, multiple
datasets, each originating from a different metal ion,
are considered. As discussed above, the first dataset

requires a total of 6n + 2 variables. Each metal ion
introduces as additional variables only the position and
orientation of the new tensor with respect to the first.
Therefore, each additional dataset introduces only the
variables related to the new tensor. These can be either
5 variables (a rotation and two values for the magnetic
susceptibility anisotropy) in case the new tensor refers
to a different metal in the same site as the first, or
8 variables (a translation, a rotation and two values
for the magnetic susceptibility anisotropy) in case it
refers to a metal in a different site. A minimization is
then carried over this new set of variables, as explained
below.

As the target function, due to the nature of the con-
straints, has many local minima, the second stage of
the program is successful only if the starting values
for the minimization process are close to the correct
values. The search for the correct starting values is,
indeed, an essential step in the search for the global
minimum. To discuss this point, let us restrict, for
simplicity, to the case of two datasets representing two
metals in the same position. From the first stage, two
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sets of 6n + 2 variables are obtained, each set rep-
resenting a rigid configuration of the α-helices with
respect to its metal tensor. We know, however, that
from a single configuration 4n−1 different symmetric
positions may be generated, without any change in the
target function. If the observed values are exact, only
one of these positions of the first dataset coincides
with one of the 4n−1 different positions of the second
dataset (see Figure 2). This is the unique solution, and
the only one having zero value of the target function
for both datasets. All other configurations will have a
target function larger than zero, as they have different
sets of symmetries for each of the datasets, provided
that the magnetic susceptibility tensors have differ-
ent orientations. The trivial solution is to perform a
pairwise comparison of the 4n−1 solutions from the
first dataset with the 4n−1 solutions from the second
dataset. Using a matching strategy (see Appendix A),
the number of possible configurations that have to be
inspected is quite high: n × 8n. This number grows
exponentially with the number of datasets. However,
since the contributions to the target function from the
different helices are independent from one another, the
problem reduces to a set of n×8n cases (see Appendix
A), as the best match for the whole protein is found by
merging the best matches of the single α-helices. This
number cannot be further reduced without running the
risk of bypassing the best match, though in this set
of cases there are exactly 2n elements with an exact
match.

When an error is added to better simulate real
experimental values, we still need to analyze the
symmetric positions of the α-helices to find the best
starting values of the fitting parameters, as described
in Appendix A. The number of cases leading to exact
matches is known a priori in the case of exact data.
When a small error is added this situation is preserved.
The identification of this 2n cases is a good indepen-
dent test of the fact that this property is not destroyed
by the error and (in principle) that the solution may
be reliable. A minimization process starting from the
best values (with a polytope type algorithm) then de-
termines a candidate minimum. The program then uses
the minimal value of the target function to select a
subset of all the possible initial matches, and finds new
minima by performing minimization processes. The
final result is a set of possible configurations, ordered
by increasing target function value.

Results and discussion

Simulations on protein models

The program was tested through simulation of two
protein models: the oxidized E. coli cytochrome b562
(Arnesano et al., 1999), a heme protein containing a
low spin Fe(III) ion, and calbindin D9k (Bertini et al.,
2001b), a protein which contains two calcium ions
that can be substituted by lanthanides(III) in either
or both binding sites (Linse et al., 1987; Kretsinger,
1980; Vogel et al., 1985). Both proteins contain four
α-helices. The starting assumption is that the loca-
tion and length of the α-helical elements of secondary
structure along the protein sequences are known. The
following procedure was used:

(1) Ideal α-helices were constructed from their
known sequences using commercial programs;

(2) they were positioned in the same configuration
as in the real proteins, among them and with respect
to metal ion(s). Such structure configurations, con-
stituted by ideal α-helices only, represent our protein
models;

(3) PCS, RDC and CCR relative to the N, HN,
Cα and Hα atoms were then calculated to create
dataset(s) by employing the programs FANTASIAN
(Banci et al., 1996, 1997), FANTAORIENT (Banci
et al., 1998b) and a new program (FANTACROSS)
written to calculate CCR∗ (Bertini et al., 2001d). Re-
alistic values for the magnetic susceptibility tensor
parameters were selected. For cytochrome b562 the
magnetic susceptibility anisotropy values of low spin
iron(III) derivative was used (Arnesano et al., 1999),
while for calbindin D9k the magnetic susceptibility
tensors of the Ce(III), Yb(III) and Dy(III) derivatives
were used (Bertini et al., 2001b);

(4) calculated dataset(s) and modeled α-helices
were provided to the program developed in this work
to back-calculate the relative positions of the helices
and of the metal ion(s), which is the required solution;

(5) such solution was compared with the starting
protein model, and the RMSD between the two was
calculated.

Subsequently, step 3 was performed by generat-
ing the constraints from the actual protein structures
(cytochrome b562 and calbindin D9k) rather than from
the ideal helical models, and the calculations in steps
4 and 5 were repeated. The latter procedure simu-

∗The programs FANTASIAN, FANTAORIENT and FAN-
TACROSS are available at the web site: www.postgenomicnmr.net
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Figure 2. Sketch of the second stage of the fitting program. With two datasets, each helix can be located in four positions from the fit of the first
dataset and in four different positions from the fit of the second dataset. Therefore, after all positions are referred to the same reference system,
8 positions must be inspected for each helix. For exact datasets, two out of the eight positions coincide (dark helix) and provide the solution.
Differently, global fits must be performed.

lates a possible use of the present program to actually
determine a protein fold.

It is expected that for a four-helix bundle protein,
which is the case of cytocrome b562, it is possible to
obtain the correct structure. Indeed, the structure of
the four helix bundle protein cytochrome c′ was re-
cently obtained with experimental data in the absence
of NOE constraints (Hus et al., 2000; unpublished re-
sults from our laboratory). For calbindin, this task is
expected more difficult to be achieved (Bertini et al.,
2001e).

Cytochrome b562

For the cytochrome b562 and the dataset (consti-
tuted by PCS, RDC and CCR) generated from the
ideal helical model, the program finds one of the
64 possible configurations, and the others are gen-
erated by symmetry operations as described above.
The 64 solutions were analyzed to remove structures
with co-penetrations among α-helices and with inter-
helix distances too long with respect to the maximum

length that can be covered by the aminoacids between
consecutive α-helices.∗

Only 2 configurations have no co-penetrations and,
among them, only one is acceptable as far as the
inter-helix chain length is concerned. Violations for
all other configurations are so large that they can be
safely rejected. The RMSD between the model used
to generate the dataset and the obtained configuration
is equal to zero, as expected for a dataset generated
with zero error.

Therefore, this first test shows that the program is
indeed capable of assessing, in a deterministic way, the
intrinsic ability of a set of paramagnetic constraints to
univocally generate the correct protein fold. The result
of the test also shows that the cytochrome b562 topol-
ogy (and, by extension, the 4-helix bundle topology)

∗Co-penetrations have been defined by modeling each α-helix as a
cylinder, with principal directions defined by the inertia tensor and
radius of 3 Å, as the position of the lateral chains are not known. The
choice of 3 Å for the helix radius is a conservative one, as the real
radius may be larger in the presence of bulky side chains. However,
a value as small as possible was selected, as it is expected that the
most probable configuration is that with no co-penetrations but with
the closest lateral chains among α-helices.
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Table 1. Value of the RMSD between the modeled
structure of cytochrome b562, used to generate a
dataset containing PCS and RDC, and the solution
provided by the program, for increasing value of
the absolute and percent components of the error
affecting the dataset

Error PCS Error RDC RMSD

abs % abs (Å)

0 0 0 0.00

±0.05 ±4 ±0.2 0.35

±0.10 ±8 ±0.4 0.61

±0.20 ±8 ±0.4 0.65

can be arrived at with the sole use of paramagnetic
constraints, in the presence of secondary structure
information. To further test the strength of these con-
straints, realistic errors were then added in the dataset,
with a percent component and an absolute component.
The best-fit solution was obtained and the 64 possible
configurations with the same value of target func-
tion were generated. Co-penetrations and inter-helix
chain length selected again one acceptable solution
only. Again, all symmetric configurations are rejected
with confidence, as violations are really large. Table 1
shows that the RMSD between the selected solution
and the protein model remains acceptable. In fact for
errors of up to ±0.2 ppm plus ±8% for PCS, and up
to ±0.4 Hz for RDC, the RMSD is smaller than 0.65
Å. Therefore, the correct solution is always obtained.
CCR with errors of ±0.2 Hz ± 10% (i.e., of the order
of the experimental ones) do not affect the obtained
solution appreciably, if all PCS and RDC are present,
and they were thus removed. If RDC are also removed
and calculations are performed only with PCS con-
straints, the correct solution is found only for errors
in PCS below ±0.05 ppm plus ±4% (the RMSD in
this limiting case being 2.8 Å). In the same way, the
correct solution is found for datasets containing both
PCS and RDC of either N and HN or Cα and Hα only
if errors are kept small.

An even more stringent test for the strength of the
constraints can be carried out by using real helices
from the actual cytochrome b562 structure (Arnesano
et al., 1999) to calculate the values of PCS and RDC
in the datasets. Real helices may be in fact somewhat
distorted with respect to the ideal geometry. The four
helices were again modeled as ideal by the knowledge
of the theoretical values of the dihedral angles of the
α-helices domains. The program succeeded in finding

Figure 3. Superposition of the real helices of cytochrome b562
(light gray line), used to calculate PCS and RDC, to the solution
obtained from the program (dark gray line) by fitting such data.
RMSD = 1.51 Å.

the correct relative positions of the four helices with
respect to the metal ion as a unique acceptable solu-
tion, in the sense that co-penetrations and inter-helix
chain length selected only one structure among the
64 symmetric configurations obtained from the best
fit solution, with smallest target function value, and
thus basically the fold of the protein is again obtained
(see Figure 3). In Table 2, the values of the RMSD be-
tween the protein solution structure and the calculated
structure are reported for increasing values of the error
introduced in the calculated values of PCS and RDC.
The protein fold is reconstructed with sufficient preci-
sion even for errors larger than the experimental ones.
PCS were calculated for HN, N, Cα and Hα signals
and RDC for NH and CH pairs. We noted however
that if only the N and HN or the Cα and Hα atoms
were considered, no best-fit solution is acceptable in
both cases. The above test performed with constraints
generated from a real protein structure demonstrates
that, although not designed for this purpose, in favor-
able cases the present program can be used as such to
univocally determine the protein fold.

Calbindin D9k

For the calbindin model the situation is strikingly dif-
ferent. In case one dataset only is considered, and
the magnetic susceptibility tensor is chosen to be
that of any of the three lanthanides, Ce(III), Yb(III)
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Table 2. Value of the RMSD between the real struc-
ture of cytochrome b562, used to generate a dataset
containing PCS and RDC, and the solution provided
by the program, for increasing value of the absolute
and percent components of the error affecting the
dataset

Error PCS Error RDC RMSD

abs % abs (Å)

0 0 0 1.51

±0.025 ±2 ±0.1 1.32

±0.05 ±4 ±0.2 1.40

±0.10 ±8 ±0.4 1.56

±0.20 ±8 ±0.4 1.67

or Dy(III), 18 configurations have no co-penetrations
and, among them, there are 12 acceptable configura-
tions as far as the inter-helix chain length is concerned.
This solution degeneracy is ascribed to the fact that
in calbindin the helices are much shorter than in cy-
tochrome b562 and inter-helix chains are much longer.
This confirms the already noted difficulty of exper-
imentally obtaining the correct protein fold of cal-
bindin without a minimal use of NOEs (Bertini et al.,
2001e). To confirm this, calculations repeated with as
few as three distance constraints between atoms of dif-
ferent α-helices (with accuracy of ±2 Å) are enough to
select the correct solution among the 12.

The situation is even worse for non exact PCS and
RDC values. If datasets are affected by an error of
±0.1 ppm plus ±4% on PCS and ±0.4 Hz on RDC,
in fact, in case the magnetic susceptibility of Ce(III)
is considered, the program provides 5 configurations
that do not even include the correct one, whereas if
the larger magnetic susceptibility of Yb(III) or Dy(III)
is used, the correct solution is present among 13 or 12
acceptable configurations, respectively.∗ All the above
calculations show that the calbindin topology is dif-

∗The large number of allowed configurations without co-
penetrations is also due to the fact that, for a metal ion that occupies
a lateral position in a protein fold, the symmetries of the suscepti-
bility tensor axes distribute the helices over a wider space than for
a metal ion in the center of the protein. This reduces the probabil-
ity of co-penetrations. Therefore, we made the same calculations
with the metal fictitiously located in the center of the protein. For
an exact dataset and for the magnetic susceptibility of Ce(III), 6
configurations have no co-penetrations and, among them, there are
3 acceptable configurations as far as the inter-helix chain length is
concerned (to be compared with the 12 solutions obtained in the
lateral metal ion case). For a non exact dataset, the correct location
is always found among 4, 8 or 3 configurations, for the magnetic
susceptibility of Ce(III), Yb(III) or Dy(III), respectively. This shows

ficult to be obtained from paramagnetic constraints
only, as more than one acceptable solution is always
found.

It becomes thus interesting to check whether de-
generacy can be removed by considering datasets
relative to two metal ions in the same position or in dif-
ferent positions. Calbindin is an ideal protein for such
a test, as it is really possible either to substitute more
than one metal ion in the same site, or in different sites.
As expected from theoretical considerations, for exact
datasets, one solution only is always obtained, which,
in any case, is the correct one. The behavior of the fit-
ting procedure for non exact datasets is thus analyzed
in order to estimate: (i) the maximum error allowed by
the system for providing the correct solution, (ii) the
strength of the fit. In fact, errors influence the values of
the many local minima of the target function, among
which the global minimum may not even coincide with
the ‘correct’ solution. The amplitude of the errors was
increased up to values larger than those experimentally
expected. The acceptable solutions (i.e., after discard-
ing solutions with co-penetrations or inter-helix chain
length violations) are reported in Table 3. Configu-
rations are reported for increasing value of the target
function. In some cases one configuration only is ac-
ceptable, in other cases they can be many, depending
on the error and on the magnetic susceptibility ten-
sors. The data show that the program does succeed in
finding the correct solution, but the whole approach
is weak, as the correct solution has a target function
only slightly smaller than those of completely wrong
configurations. The relevancy of this fact increases by
increasing the amplitude of the error introduced in the
datasets. If PCS and RDC values of the N-H pair only
or of the C-H pair only are present with large errors
in the datasets, the program often does not succeed in
finding the correct solution. It was also checked that
inclusion of CCR with errors of ±0.2 Hz ± 10% does
not improve the quality of the solutions appreciably, if
all PCS and RDC are present.

If datasets are calculated using the real protein
structure as such, and again ideal α-helices, modeled
according to the theoretical dihedral angles expected
in α-helices domains, are provided to the program
to be located according to the protein fold, the pro-
gram succeeds in finding the correct solution only for
Yb(III) and Dy(III) ions substituted in the same posi-
tion, with RMSD = 2.6 Å. This further worsening is

that indeed a lateral position of the metal ion makes the solution
degeneracy larger.
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Table 3. Value of the RMSD between the modeled structure of cal-
bindin, used to generate datasets containing PCS and RDC, and the
best-fit solutions provided by the program, ordered for increasing
value of the target function, for increasing value of the absolute and
percent components of the error affecting the datasets. Couples of
datasets have been used among those calculated for Ce(III), Yb(III)
and Dy(III) in the same or in different sites

Ion 1 Ion 2 Error PCS Error RDC TF RMSD
abs % abs (Å)

Metals in the same site

Ce(III) Yb(III) ±0.025 ±2 ±0.1 0.038 0.048
±0.05 ±4 ±0.2 0.153 0.098
±0.1 ±8 ±0.4 0.607 0.202
±0.2 ±8 ±0.4 1.45 0.361

1.81 ∼11
Ce(III) Dy(III) ±0.025 ±2 ±0.1 0.038 0.065

0.051 ∼8
0.059 ∼12
0.074 ∼14

±0.05 ±4 ±0.2 0.154 0.135
0.167 ∼8
0.177 ∼12
0.192 ∼14
0.194 ∼13
0.200 ∼14

±0.1 ±8 ±0.4 0.609 0.280
0.623 ∼8
0.624 ∼8
0.638 ∼12
0.646 ∼15
0.647 ∼14
0.650 ∼13

±0.2 ±8 ±0.4 1.610 0.387
1.631 ∼8
1.631 ∼8
1.635 ∼13
1.647 ∼14
1.653 ∼13
1.653 ∼12

Metals in different sites

Ce(III) Ce(III) ±0.025 ±2 ±0.1 0.498 0.312
±0.05 ±4 ±0.2 1.398 0.614

1.665 ∼10
±0.1 ±8 ±0.4 2.514 1.011
±0.2 ±8 ±0.4 3.517 ∼9

Ce(III) Yb(III) ±0.025 ±2 ±0.1 0.042 0.072
±0.05 ±4 ±0.2 0.170 0.155
±0.1 ±8 ±0.4 0.663 0.349

0.903 ∼8
±0.2 ±8 ±0.4 1.84 ∼8

Ce(III) Dy(III) ±0.025 ±2 ±0.1 0.036 0.073
±0.05 ±4 ±0.2 0.149 0.152
±0.1 ±8 ±0.4 0.588 0.320

0.977 ∼8
±0.2 ±8 ±0.4 1.343 0.596

1.567 ∼8
1.601 ∼11

expected to be due to deformations of real helices with
respect to the ideal ones, as it is discussed below.

A set of calculations has been performed to analyze
the possible contribution of relaxation constraints to
discriminate between the correct solution and other so-
lutions with similar target function. For the calbindin
D9k system, it appears that the contribution to the
target from the violations of relaxation constraints is
relatively small, and it is not necessarily the smallest
for the correct solution.

Helix length and distortion

Despite the striking difference in behavior between the
two protein models, for both cytochrome b562 and cal-
bindin D9k a relevant contribution to the RMSD value
is provided by the fact that helices are not ideal and of-
ten distorted in some way (see Figure 3). Even if such
distortions correspond to differences in the position of
the atoms up to 0.5−1 Å, i.e., they are very small, PCS
and RDC are sensitive enough constraints to cause the
appearance of new minima that can be even lower than
that corresponding to the correct structure. Therefore,
the program may not be able to find the correct so-
lution. It is found that helix distortion in cytochrome
b562 is tolerable, whereas it is not in calbindin. As
already discussed, solution degeneracy in calbindin is
ascribed to the fact that the helices are much shorter
than in cytochrome b562, and inter-helix chains are
much longer.

It could thus be instructive to investigate what
happens when helix length is reduced from that of cy-
tochrome b562 to that of calbindin. To do so, the first
and last aminoacids are thus progressively removed
from each modeled helix of cytochrome b562, as major
distortions often occur at the heads and tails of the
helices. Table 4 shows that even for multiple reduc-
tions of the helix length and simultaneous increase of
the inter-helix chains, one acceptable solution only is
obtained. Such solution is obtained by fitting exact
dataset calculated for the modeled protein. However,
as soon as the helix length and inter-helix chains are of
the same order as in calbindin, the same degeneracy is
obtained than that calculated for calbindin. This shows
that solution degeneracy indeed depends on helices
length with respect to inter-helix chain length. Table 4
also reports the number of structures with small viola-
tions, that can thus be acceptable if small distortions of
helices were allowed. Such value is thus an indication
of the strength of the obtained acceptable solution(s).
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Table 4. Number of acceptable structures, as far as the
co-penetrations and the inter-helix chain length is con-
cerned, and of structures with small violations, obtained
from the program by fitting the exact PCS and RDC
values of one dataset. For cytochrome b562 calcula-
tions have been performed by progressively removing
the first and last aminoacids from all helices and thus
simultaneously increasing the inter-helix chains length

Acceptable Structures with

structures small violations

Cytochrome b562

Whole helices 1 0

helices-2 a. 1 0

helices-4 a. 1 1

helices-6 a. 1 5

helices-8 a. 4 13

helices-10 a. 14 13

Calbindin

Whole helices 12 15

A similar calculation was performed for calbindin.
Here PCS and RDC (CCR are not used) of the first
and last aminoacids calculated for the real helices are
removed from the dataset. Surprisingly, if the ions
with the largest magnetic susceptibility are used (i.e.,
Dy(III) and Yb(III)), the structure with the smallest
target function is now closer to the correct structure,
with RMSD smaller than 2 Å (see Figure 4). This
shows that a major requirement for the program to
be able to indicate the correct protein fold is that real
helices are close to ideality.

Concluding remarks

In summary, the above theoretical considerations and
the simulations performed with the present program
indicate that:

(i) PCS, RDC and CCR provide enough constraints
to obtain the correct position of one helix in the
reference frame of a metal ion;

(ii) in case a metalloprotein is constituted by n
helices, their relative orientation is not uniquely de-
termined by PCS, RDC and CCR constraints, if all
related to the same metal ion, but there are 4n−1

possible configurations. In order to select the correct
structure, helix co-penetrations and inter-helix length
violations can be inspected. If this is not enough to

Figure 4. Superposition of the real helices of calbindin D9k (light
gray line), used to calculate PCS and RDC in the presence of Dy(III)
or Yb(III) in the same site, from which the values relative to the
first and last aminoacids of each helix have been removed, to the
solution obtained from the program (dark gray line) by fitting such
data. RMSD = 1.96 Å.

remove all degeneracy, a unique solution can be ob-
tained (a) by substituting two different paramagnetic
metal ions in the same location, or (b) by employ-
ing two paramagnetic metal ions in different locations,
or (c) by acquiring a few long range distance con-
straints. Paramagnetic relaxation constraints are not
particularly helpful;

(iii) in the particular case of four helices, which are
constituents of several common protein folds, strik-
ingly different behaviors are shown by cytochrome
b562 and calbindin D9k. Crucial elements to obtain the
correct fold are helix length and helix ideality. In fact,
for cytochrome b562, the correct fold of the α-helices is
determined even by using the paramagnetic constraints
relative to one metal ion only, and it is obtained also
by generating PCS and RDC from the real protein
structure; for calbindin, datasets relative to two dif-
ferent metal ions (or two metal ions in different sites)
are needed to remove any degeneracy and to obtain
the correct structure. However, the fits in the presence
of non-exact datasets are weak, and further problems
arise when PCS and RDC are generated from the real
protein structure, due to the non ideality of helices.

As a side result, the present calculations also indi-
cate that the different orientation of the susceptibility
tensor for different lanthanides, even if relatively small
(Bertini et al., 2001b), is large enough to allow the
use of one lanthanide to select the correct solution
among those allowed by another lanthanide, even in



134

the presence of large errors affecting the input data.
It is also shown that lanthanides with large magnetic
susceptibility have a somewhat better discriminating
power among the various solutions.

In conclusion, the approach described here and the
developed program has allowed us to put on more
quantitative basis the intrinsic information content
of paramagnetic constraints, for α-helical proteins,
as a function of the protein topology. It has been
also shown that, in favorable cases, the present pro-
gram can by itself generate the proper protein fold.
This result is encouraging towards further attempts
at developing more advanced programs for solution
structure determination of paramagnetic proteins with
optimized use of paramagnetic constraints. Such pro-
grams could be precious especially for large molecular
weight proteins, where the classical approach cannot
be successfully applied.
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Appendix A

The first stage of the numerical procedure consists in
determining, for each dataset Dk , a set of rigid mo-
tions (ak

j , tk
j ), j = 1, . . . , n which bring the αj from

the lab system to the Mk metal system, and two val-
ues �χk

ax and �χk
rh. This stage of the procedure does

not show particular difficulties if the error is kept to a
reasonable level.

The second stage of the procedure consists in join-
ing data coming from different datasets. Merging the
rigid motions in a single setting involves a first ar-
bitrary choice. A second arbitrary choice has to be
made to find, in the setting already determined, the
best matching positions for the αj . First we have to
define a set of transformations to describe the multiple
dataset setting, denoted by capital letters. Small let-
ters stand instead for data coming from stage one. Let

(A1
j , T 1

j ) = (a1
j , t1

j ) be transformations from the lab

frame to the metal system M1. The relative positions
of the αj are already defined by (A1

j , T 1
j ). The tensor

Mk may be represented by means of a rigid motion
(A1k, T 1k) bringing the metal system M1 in the metal
system Mk. In other words, an atom belonging to αj

with position vector x in the lab frame has coordinates
A1

j (x − T 1
j ) in the system M1, and has coordinates:

A1k(A1
j (x − T 1

j ) − T 1k) (A1)

in the system Mk . Two or more metal ions may share
the same location (this is an a-priori piece of informa-
tion), so not every T 1k is defined independently. The
set of variables are hence 6n + 2 for the first dataset,
while each successive dataset Dk adds 5 variables (a
rotation and two coefficients) if Mk is in an already
defined location, or 8 variables (a rotation, a transla-
tion and two coefficients) if Mk is in a new position.
Let Xj be the set of coordinates of the ordered atoms
of αj in the reference system. Let Zk

j be the set of

coordinates of the same atoms in the system Mk . The
situation is described by the following graph:

X1
(A1,T1)→ Z1

1

X2
(A2,T2)→ Z1

2· · ·
Xn

(An,Tn)→ Z1
n




(A1k,T 1k)→




Zk
1

Zk
2· · ·

Zk
n

.

Now we have to select the best matching configu-
rations, taking into account symmetries. In case we
have noisy data, the problem becomes to find the best
matching positions for αj , considering all sets of pos-
sible symmetries. Since data coming from stage one is
already the output of a minimization process, the best
matching positions for αj may be identified with the
lowest possible value of the TF. Note that the target
function is modular, and can be split in the sum:

TF =
∑

k
TFk =

∑
j,k

TFk
j , (A2)

where TFk
j is the target function of αj and Dk , and

TFk = ∑
j TFk

j . For the sake of simplicity, let us
suppose there are only two datasets present. There are
arbitrary choices here, the strategy we selected is the
following.

When two metals share the same location, in prin-
ciple t1

j = t2
j . With experimental data they may be

different, however this is seldom a problem because
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in practice the tk
j are very well determined by the first

stage. Then we can define T 1
j by either t1

j or t2
j , the

one corresponding to the dataset with minimal target
function value. We then choose a set of n possible
definitions for A12 in the following way. Fix an index
i. Being t1

i ≈ t2
i , an obvious choice to have coherent

representations a1
i and a2

i is

A12a1
i = a2

i . (A3)

The choice of the index i is arbitrary, so there are n

possible choices for A12 = a2
i (a1

i )∗, where (a1
i )∗ is

the inverse of a1
i . As a final step we define A1

j = a1
j ,

j = 1, . . . , n to find a complete set of initial val-
ues. However, we must consider axial symmetries sτ,
τ = 1, . . . , 3, with respect to the τ coordinate axis
of the metal system. Let s0 be the identity. Any sym-
metric choice A1

j = sτa1
j does not change the value of

TF1 in Equation A2 because sτ is a symmetry applied
to the metal system M1. However this is not a sym-
metry for the metal system M2, so the value of TF2

changes. This accounts for the 4 possible choices for
A1

j = sτa1
j , τ = 0, . . . , 3. We also consider the 4 sym-

metries with respect to the metal system M2. We need
to find A1

j such that, when plugged in Equation A1, the
resulting transformation is a symmetry with respect to
M2, i.e.:

A12A1
j (x − T 1

j ) = sτa2
j (x − T 1

j ). (A4)

Solving Equation A4 we find: A1
j = (A12)∗sτa

2
j . In

conclusion we get the following 8 choices for A1
j :

{
A1

j = sτa1
j , τ = 0, . . . , 3

A1
j = (A12)∗sτa2

j , τ = 0, . . . , 3 .
(A5)

Following this strategy, the program analyzes these
8 possible choices for the location of each αj . The con-
tributions of each αj to TF are independent (see Equa-
tion A2), so the best configuration of the molecule
is determined by joining the best locations of the αj

found separately. In this way, only 8n (instead of 8n)

different α-helix locations must be inspected to find
the best configuration of the molecule for a fixed A12.
We have n possible choices for A12 in Equation A3,
so 8n2 is the total number of comparisons needed to
select the best match out of the set of n × 8n initial
configurations.

In the case of two metals in different locations,
Equations A4 and A5 do not change. Of course in this

case t1
j and t2

j are different. In this case we have the
following definitions:

A12 = a2
i (a1

i )∗, T 12 = a1
i (t2

i − t1
i ),

i = 1, . . . , n.


A1
j = sτa

1
j ,

A1
j = (A12)∗sτa2

j ,

T 1
j = t1

j

τ = 0, . . . , 3,

T 1
j = t2

j − (sτa2
j )∗A12T 12

τ = 0, . . . , 3,

for the transformations involved in the selection strat-
egy.
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